

Edition 1.2 2021-10 CONSOLIDATED VERSION

TECHNICAL REPORT

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

Specification for radio disturbance and immunity measuring apparatus and methods –

Part 4-5: Uncertainties, statistics and limit modelling – Conditions for the use of alternative test methods

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.100.10; 33.100.20

ISBN 978-2-8322-4232-2

Warning! Make sure that you obtained this publication from an authorized distributor.

Edition 1.2 2021-10 CONSOLIDATED VERSION

REDLINE VERSION

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

Specification for radio disturbance and immunity measuring apparatus and methods –

Part 4-5: Uncertainties, statistics and limit modelling – Conditions for the use of alternative test methods

- 2 - CISPR TR 16-4-5:2006+AMD1:2014 +AMD2:2021 CSV © IEC 2021

CONTENTS

1	Scope		
2	Normative references		
3	Terms and definitions		
4	Symbols and abbreviated terms		
5	Introduction		
6		edure to derive limits for an alternative test method	
6.1 Overview			
	6.2	Select the reference quantity X	
	6.3	Describe the test methods and measurands	
	6.4 Determine the deviations of the measured quantities from the reference quantity		
	6.5	Determine the average values of the deviations	
	6.6	Estimate the standard uncertainties of the test methods	19
	6.7	Estimate the expanded uncertainties of the test methods	20
	6.8	Calculate the average conversion factor	21
	6.9	Verify the calculated values	22
	6.10	Apply the conversion	22
7		surement-based procedure to derive limits for an alternative test method	~ ~
		ed on measurement results	
	7.1	General	22
	7.2	Application of practical measurement results to determine the conversion factors	23
		7.2.1 The conversion factor	
		7.2.2 Estimation of SCU by measurement	
		7.2.3 Applying the conversion factor	
8	Deriv	vation of limits for the use of reverberation chambers as ATM for radiated	
	disturbance measurements based on a statistical analysis of all essential factors		
	8.1	Conversion factor	26
	8.2	Measurement uncertainty	27
An	nex A	(informative) Remarks on EUT modelling	29
	A.1	Types of EUTs	29
	A.2	Application of statistics	29
		(informative) Examples of application of the test method comparison e	30
	B.1	Example 1 – Measurements at 3 m-separation in fully anechoic room	
		compared to 10 m-separation measurements on open-area test site	
		B.1.1 Small EUTs without cables	
		B.1.2 Small EUTs with cables	49
	B.2	Example 2 – 3 m open-area test site measurements compared to 10 m open- area test site measurements	40
		B.2.1 Small EUTs without cables	
		B.2.2 Small EUTs with cables	
	B.3	Example 3 – reverberation chamber measurement results compared to 10 m	
	2.0	open-area test site results	59
	Annex C (informative) Example of the application of the test method comparison		
pro	e based on measurement results	60	
	C.1	General	60

		5:2006+AMD1:2014 – 3 – V © IEC 2021		
C.2	Measu	rement of conducted disturbance using CDNEs	60	
C.3		red disturbance field strength		
C.4	Conve	rsion factor for the measurement with a CDNE		
	C.4.1			
		Uncertainty of the conversion factor	63	
		D (informative) Statistical method for conversion of disturbance limits turbance established test methods to the RC test method	66	
D.1		al		
D.2 Models for EUT directivity				
D.3	Results of modelling			
D.4	Instrumentation uncertainty for radiated disturbance measurement results in an RC			
	D.4.1	Measurand for radiated disturbance measurements using an RC	73	
	D.4.2	Symbols of input quantities common to all disturbance measurements	73	
	D.4.3	Symbols of input quantities specific to RC measurements	73	
	D.4.4	Input quantities to be considered for radiated disturbance measurements using an RC	74	
	D.4.5	Uncertainty budget for radiated disturbance measurement results using an RC	74	
	D.4.6	Rationale for the estimates of input quantities for radiated disturbance measurement results using an RC	76	
Figure 2 -	- Overv	iew of quantities to estimate for use in conversion procedure iew of limit conversion procedure using estimated quantities mple reference quantity	16	
Figure B.	2 – EU1	Γ and antenna set-up for fully anechoic room emission measurement	31	
Figure B.	3 – EU1	Γ and antenna set-up for open-area test site measurement	31	
		liation characteristics of elementary radiator (left), and scheme of t)	32	
		, kimum average deviations for 3 m FAR (top) and 10 m OATS (bottom)		
-		nple cumulative distribution function		
Figure B.	7 – Unc	ertainties due to the unknown EUT characteristic for 3 m FAR (top) (bottom)		
Figure B.	8 – Exp	anded uncertainties (<i>k</i> = 2) of alternative (3 m FAR, top) and n OATS, bottom) test methods		
	•	kimum average conversion factors for different volumes		
•		noto (left) and cut-view of simulation model (right) of the specimen EUT		
Figure B.	11 – De	eviations of the specimen EUT: 3 m fully anechoic room (top) and 10 is site (bottom)		
-		mple FAR measurement		
		ATS 10 m limit line converted to FAR 3 m conditions		
		panded uncertainties		
•		emparison of the measured values with the corrected converted limit		
-		JT and antenna set-up of 3 m open area test site measurement		
		aximum average deviations for 3 m OATS		
Figure B.18 – Uncertainties due to the unknown EUT characteristic for 3 m OATS52				
Figure B.19 – Expanded uncertainties ($k = 2$) of alternative test method [OATS (3 m)]54				
Figure B.:	20 – Ma	aximum average conversion factors	55	

+AMD2:2021 CSV © IEC	2021
Figure B.21 – Deviations of the specimen EUT: Open area test site (3 m)	57
Figure B.22 – Sample OATS (3 m) measurement	58
Figure B.23 – OATS (10 m) limit line converted to OATS (3 m) conditions	58
Figure B.24 – Expanded uncertainties	59
Figure B.25 – Comparison of the corrected values with the converted limit	59
Figure C.1 – EUTs used during RRT	60
Figure C.2 – Measurement results of the asymmetrical voltage using both CDNEs	61
Figure C.3 – Measured disturbance field strength	62
Figure C.4 – Conversion factors of all measurements	63
Figure C.5 – Mean conversion factors for each EUT	63
Figure C.6 – Measured polarization	63
Figure C.7 – Comparison with CISPR 15:2013	63
Figure C.8 – Deviation of the conversion factors from the average conversion factor of each EUT	64
Figure C.9 – Deviation of the conversion factors from the trend line [poly (mean value $K(f)$)]	64
Figure D.1 – Simulated radiation pattern of an electrically large emitter (50 cm radius, <i>ka</i> = 10,5 at 1 GHz) in a single plane (X-plane) (Wilson [17])	66
Figure D.2 – Comparison of different expressions for maximum directivity of antennas and unintentional emitters as a function of electrical size ka . μ is the polarization mismatch factor	68
Figure D.3 – Conversion factors (mean and quantile values) from OATS/SAC (measurement distance of 10 m) results to RC results and different radii <i>a</i> of the surrounding sphere as a function of frequency	69
Figure D.4 – Conversion factors (mean and quantile values) from FSOATS/FAR ($d = 3$ m measurement distance) results to RC results and different radii a of the surrounding sphere as a function of frequency	71
Figure D.5 – Conversion factor (mean and quantile values) from FSOATS/FAR results to RC results for $d = 3$ m measurement distance as a function of electrical EUT size ka	
Figure D.6 – Deviation of the QP detector level indication from the signal level at receiver input for two cases: sine-wave signal, and impulsive signal (PRF 100 Hz)	78
Figure D.7 – Deviation of the peak detector level indication from the signal level at receiver input for two cases: sine-wave signal, and impulsive signal (PRF 100 Hz)	79
Table 1 – Summary of steps in conversion procedure	
Table 2 – Overview of quantities and defining equations for conversion process	17
Table B.1 – Instrumentation uncertainty of the 3 m fully anechoic chamber test method	36
Table B.2 – Uncertainties in dB due to the unknown EUT characteristic for 3 m FAR	41
Table B.3 – Uncertainties in dB due to the unknown EUT characteristic for 10 m OATS	42
Table B.4 – Maximum average conversion factors in dBbetween 10 m OATS and3 m FAR	45
Table B.5 – Uncertainties in dB due to the unknown EUT characteristic for 3 m OATS	53
Figure B.20 – Maximum average conversion factorsTable B.6 – Maximum average conversion factors in dB between 10 m and 3 m OATS	55
Table D.1 – Overview of EUT diameters (= $2a$) at the transition from electrically small to electrically large (from [17])	67
Table D.2 – Conversion factors (mean, quantile values, and standard deviation σ) for <i>a</i> = 0,1 m	69

- 4 - CISPR TR 16-4-5:2006+AMD1:2014

CISPR TR 16-4-5:2006+AMD1:2014 - 5 -+AMD2:2021 CSV © IEC 2021

Table D.3 – Conversion factors (mean, quantile values, and standard deviation σ) for <i>a</i> = 0,75 m	70
Table D.4 – Conversion factors (mean, quantile values, and standard deviation σ) for <i>a</i> = 2,5 m	70
Table D.5 – Example of disturbance limits for $a = 0,75$ m (EUT diameter 1,5 m) for the residential environment	70
Table D.6 – Conversion factors (mean, quantile values, and standard deviation σ) for <i>a</i> = 0,1 m	71
Table D.7 – Conversion factors (mean, quantile values, and standard deviation σ) for <i>a</i> = 0,75 m	71
Table D.8 – Conversion factors (mean, quantile values, and standard deviation σ) for a = 2,5 m	72
Table D.9 – Example of disturbance limits for <i>a</i> = 0,75 m (EUT diameter 1,5 m) for the residential environment	72
Table D.10 – Comparison of $K_{\text{lin mean}}(f)$ and $K_{\text{log mean}}(f)$ for the conversion of OATS/SAC ($d = 10 \text{ m}$) results to RC results for $a = 0,75 \text{ m}$	73
Table D.11 – Comparison of $K_{\text{lin mean}}(f)$ and $K_{\text{log mean}}(f)$ for the conversion of FOATS/FAR ($d = 3 \text{ m}$) results to RC results for $a = 0,75 \text{ m}$	73
Table D.12 – Uncertainty budget for radiated disturbance measurement results using an RC from 80 MHz to 1 000 MHz (example)	75
Table D.13 – Uncertainty budget for radiated disturbance measurement results using an RC from 1 GHz to 6 GHz (example)	75
Table D.14 – Values of P _{lim} for 30 MHz to 1 000 MHz (E _{lim} from [20])	78
Table D.15 – Values of P_{IIM} for 1 GHz to 6 GHz (E_{IIM} from [20])	78

- 6 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 4-5: Uncertainties, statistics and limit modelling – Conditions for the use of alternative test methods

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This consolidated version of the official IEC Standard and its amendments has been prepared for user convenience.

CISPR TR 16-4-5 edition 1.2 contains the first edition (2006-10) [documents CISPR/A/665/DTR and CISPR/A/685/RVC], its amendment 1 (2014-07) [documents CISPR/A/1050/DTR and CISPR/A/1069/RVC] and its amendment 2 (2021-10) [documents CIS/A/1321/DTR and CIS/A/1324/RVDTR].

In this Redline version, a vertical line in the margin shows where the technical content is modified by amendments 1 and 2. Additions are in green text, deletions are in strikethrough red text. A separate Final version with all changes accepted is available in this publication. CISPR TR 16-4-5:2006+AMD1:2014 +AMD2:2021 CSV © IEC 2021

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

CISPR 16-4-5, which is a technical report, has been prepared by CISPR subcommittee A: Radio-interference measurements and statistical methods.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the CISPR 16-4 series, published under the general title *Specification for* radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainties, statistics and limit modelling, can be found on the IEC website.

The committee has decided that the contents of the base publication and its amendments will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this publication using a colour printer.

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 4-5: Uncertainties, statistics and limit modelling – Conditions for the use of alternative test methods

1 Scope

This part of CISPR 16-4 specifies a method to enable product committees to develop limits for alternative test methods, using conversions from established limits. This method is generally applicable for all kinds of disturbance measurements, but focuses on radiated disturbance measurements (i.e. field strength and total radiated power), for which several alternative methods are presently specified. These limits development methods are intended for use by product committees and other groups responsible for defining emissions limits in situations where it is decided to use alternative test methods and the associated limits in product standards.

2 Normative references

IEC 60050-161:1990, International Electrotechnical Vocabulary (IEV) – Chapter 161: Electromagnetic compatibility

CISPR 16-1-1:2019, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring apparatus

CISPR 16-4-1:2003, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-1: Uncertainties, statistics and limit modelling – Uncertainty in standardized EMC tests

CISPR 16-4-2:20032011, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements Measurement instrumentation uncertainty CISPR 16-4-2:2011/AMD1:2014 CISPR 16-4-2:2011/AMD2:2018

Edition 1.2 2021-10 CONSOLIDATED VERSION

FINAL VERSION

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

Specification for radio disturbance and immunity measuring apparatus and methods –

Part 4-5: Uncertainties, statistics and limit modelling – Conditions for the use of alternative test methods

- 2 - CISPR TR 16-4-5:2006+AMD1:2014 +AMD2:2021 CSV © IEC 2021

CONTENTS

1	Scop	Scope		
2	Normative references			
3	Terms and definitions			
4	Syml	bols and abbreviated terms	10	
5	Introduction			
6	Proc	edure to derive limits for an alternative test method	12	
Ū	6.1	Overview		
	6.2	Select the reference quantity X		
	6.3	Describe the test methods and measurands		
	6.4	Determine the deviations of the measured quantities from the reference quantity		
	6.5	Determine the average values of the deviations		
	6.6	Estimate the standard uncertainties of the test methods		
	6.7	Estimate the expanded uncertainties of the test methods		
	6.8	Calculate the average conversion factor		
	6.9	Verify the calculated values		
	6.10			
7	Measurement-based procedure to derive limits for an alternative test method based on measurement results			
	7.1	General		
	7.2	Application of practical measurement results to determine the conversion factors		
		7.2.1 The conversion factor		
		7.2.2 Estimation of SCU by measurement		
		7.2.3 Applying the conversion factor		
8	Deriv	vation of limits for the use of reverberation chambers as ATM for radiated	22	
0	disturbance measurements based on a statistical analysis of all essential factors			
	8.1	Conversion factor		
	8.2	Measurement uncertainty		
Anı		(informative) Remarks on EUT modelling	27	
	A.1	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	27	
	A.2	Application of statistics	27	
		(informative) Examples of application of the test method comparison	~~	
procedure		28		
	B.1	Example 1 – Measurements at 3 m-separation in fully anechoic room	റം	
		compared to 10 m-separation measurements on open-area test site B.1.1 Small EUTs without cables		
		B.1.2 Small EUTs with cables		
	B.2	Example 2 – 3 m open-area test site measurements compared to 10 m open-	41	
	D.2	area test site measurements	47	
		B.2.1 Small EUTs without cables		
		B.2.2 Small EUTs with cables		
	B.3	Example 3 – reverberation chamber measurement results compared to 10 m	-	
	-	open-area test site results	57	
	nex C (informative) Example of the application of the test method comparison			
pro	cedur	e based on measurement results	58	
	C.1	General	58	

		5:2006+AMD1:2014 – 3 – V © IEC 2021			
C.2		rement of conducted disturbance using CDNEs	58		
C.3		red disturbance field strength			
C.4		rsion factor for the measurement with a CDNE			
••••		The conversion factor			
	C.4.2	Uncertainty of the conversion factor			
Annex D	Annex [D (informative) Statistical method for conversion of disturbance limits	-		
from radia	ated dis	turbance established test methods to the RC test method	64		
D.1	Genera	al	64		
D.2	Models	s for EUT directivity	65		
D.3	Results	Results of modelling6			
D.4		Instrumentation uncertainty for radiated disturbance measurement results in			
	D.4.1	Measurand for radiated disturbance measurements using an RC			
	D.4.2	Symbols of input quantities common to all disturbance measurements			
	D.4.3 D.4.4	Symbols of input quantities specific to RC measurements Input quantities to be considered for radiated disturbance	/ 1		
	D.4.4	measurements using an RC	72		
	D.4.5	Uncertainty budget for radiated disturbance measurement results			
		using an RC	72		
	D.4.6	Rationale for the estimates of input quantities for radiated	- 4		
		disturbance measurement results using an RC	74		
- :	0		40		
-		iew of quantities to estimate for use in conversion procedure			
-		iew of limit conversion procedure using estimated quantities			
-		mple reference quantity			
Figure B.	2 – EU1	Γ and antenna set-up for fully anechoic room emission measurement	29		
Figure B.	3 – EU1	Γ and antenna set-up for open-area test site measurement	29		
		liation characteristics of elementary radiator (left), and scheme of t)	20		
	、 U	,			
-		kimum average deviations for 3 m FAR (top) and 10 m OATS (bottom)			
-		nple cumulative distribution function	35		
		ertainties due to the unknown EUT characteristic for 3 m FAR (top) (bottom)	37		
		anded uncertainties ($k = 2$) of alternative (3 m FAR, top) and			
		n OATS, bottom) test methods	41		
	•	kimum average conversion factors for different volumes			
		noto (left) and cut-view of simulation model (right) of the specimen EUT			
-		eviations of the specimen EUT: 3 m fully anechoic room (top) and 10			
		t site (bottom)	45		
-		Imple FAR measurement			
		ATS 10 m limit line converted to FAR 3 m conditions			
Figure B.	14 – Ex	panded uncertainties	46		
Figure B.	15 – Co	omparison of the measured values with the corrected converted limit	47		
Figure B.	16 – EL	JT and antenna set-up of 3 m open area test site measurement	48		
Figure B.	17 – Ma	aximum average deviations for 3 m OATS	49		
		ncertainties due to the unknown EUT characteristic for 3 m OATS			
-		panded uncertainties ($k = 2$) of alternative test method [OATS (3 m)]			
Figure B.20 – Maximum average conversion factors					

– 4 – CISPR TR 16-4-5:2006+AMD1:201 +AMD2:2021 CSV © IEC 202	
Figure B.21 – Deviations of the specimen EUT: Open area test site (3 m)5	5
Figure B.22 – Sample OATS (3 m) measurement5	6
Figure B.23 – OATS (10 m) limit line converted to OATS (3 m) conditions5	6
Figure B.24 – Expanded uncertainties5	7
Figure B.25 – Comparison of the corrected values with the converted limit	7
Figure C.1 – EUTs used during RRT5	8
Figure C.2 – Measurement results of the asymmetrical voltage using both CDNEs5	9
Figure C.3 – Measured disturbance field strength6	0
Figure C.4 – Conversion factors of all measurements6	1
Figure C.5 – Mean conversion factors for each EUT6	1
Figure C.6 – Measured polarization6	1
Figure C.7 – Comparison with CISPR 15:20136	1
Figure C.8 – Deviation of the conversion factors from the average conversion factor of each EUT	2
Figure C.9 – Deviation of the conversion factors from the trend line [poly (mean value $K(f)$]	2
Figure D.1 – Simulated radiation pattern of an electrically large emitter (50 cm radius, ka = 10,5 at 1 GHz) in a single plane (X-plane) (Wilson [17])6	4
Figure D.2 – Comparison of different expressions for maximum directivity of antennas and unintentional emitters as a function of electrical size ka . μ is the polarization mismatch factor	6
Figure D.3 – Conversion factors (mean and quantile values) from OATS/SAC (measurement distance of 10 m) results to RC results and different radii <i>a</i> of the surrounding sphere as a function of frequency	7
Figure D.4 – Conversion factors (mean and quantile values) from FSOATS/FAR ($d = 3$ m measurement distance) results to RC results and different radii a of the surrounding sphere as a function of frequency	9
Figure D.5 – Conversion factor (mean and quantile values) from FSOATS/FAR results to RC results for $d = 3$ m measurement distance as a function of electrical EUT size ka 7	0
Figure D.6 – Deviation of the QP detector level indication from the signal level at receiver input for two cases: sine-wave signal, and impulsive signal (PRF 100 Hz)7	6
Figure D.7 – Deviation of the peak detector level indication from the signal level at receiver input for two cases: sine-wave signal, and impulsive signal (PRF 100 Hz)7	7
Table 1 – Summary of steps in conversion procedure 1	2
Table 2 – Overview of quantities and defining equations for conversion process	5
Table B.1 – Instrumentation uncertainty of the 3 m fully anechoic chamber test method3	4
Table B.2 – Uncertainties in dB due to the unknown EUT characteristic for 3 m FAR	9
Table B.3 – Uncertainties in dB due to the unknown EUT characteristic for 10 m OATS4	0
Table B.4 – Maximum average conversion factors in dBbetween 10 m OATS and3 m FAR4	3
Table B.5 – Uncertainties in dB due to the unknown EUT characteristic for 3 m OATS5	1
Figure B.20 – Maximum average conversion factorsTable B.6 – Maximum average conversion factors in dB between 10 m and 3 m OATS5	3
Table D.1 – Overview of EUT diameters (= $2a$) at the transition from electrically small to electrically large (from [17])	5
Table D.2 – Conversion factors (mean, quantile values, and standard deviation σ) for <i>a</i> = 0,1 m6	7

CISPR TR 16-4-5:2006+AMD1:2014 - 5 -+AMD2:2021 CSV © IEC 2021 Table D.3 – Conversion factors (mean, quantile values, and standard deviation σ) for a Table D.4 – Conversion factors (mean, quantile values, and standard deviation σ) for a Table D.5 – Example of disturbance limits for a = 0.75 m (EUT diameter 1.5 m) for the Table D.6 – Conversion factors (mean, quantile values, and standard deviation σ) for a Table D.7 – Conversion factors (mean, quantile values, and standard deviation σ) for a Table D.8 – Conversion factors (mean, quantile values, and standard deviation σ) for a Table D.9 – Example of disturbance limits for a = 0.75 m (EUT diameter 1.5 m) for the residential environment......70 Table D.12 - Uncertainty budget for radiated disturbance measurement results using an RC from 80 MHz to 1 000 MHz (example)73 Table D.13 – Uncertainty budget for radiated disturbance measurement results using an RC from 1 GHz to 6 GHz (example)73 Table D.14 – Values of *P*_{lim} for 30 MHz to 1 000 MHz (*E*_{lim} from [20])76 Table D.15 – Values of Plim for 1 GHz to 6 GHz (Elim from [20])76 - 6 -

INTERNATIONAL ELECTROTECHNICAL COMMISSION

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 4-5: Uncertainties, statistics and limit modelling – Conditions for the use of alternative test methods

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This consolidated version of the official IEC Standard and its amendments has been prepared for user convenience.

CISPR TR 16-4-5 edition 1.2 contains the first edition (2006-10) [documents CISPR/A/665/DTR and CISPR/A/685/RVC], its amendment 1 (2014-07) [documents CISPR/A/1050/DTR and CISPR/A/1069/RVC] and its amendment 2 (2021-10) [documents CIS/A/1321/DTR and CIS/A/1324/RVDTR].

This Final version does not show where the technical content is modified by amendments 1 and 2. A separate Redline version with all changes highlighted is available in this publication.

CISPR TR 16-4-5:2006+AMD1:2014 +AMD2:2021 CSV © IEC 2021

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

CISPR 16-4-5, which is a technical report, has been prepared by CISPR subcommittee A: Radio-interference measurements and statistical methods.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the CISPR 16-4 series, published under the general title *Specification for* radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainties, statistics and limit modelling, can be found on the IEC website.

The committee has decided that the contents of the base publication and its amendments will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this publication using a colour printer.

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 4-5: Uncertainties, statistics and limit modelling – Conditions for the use of alternative test methods

1 Scope

This part of CISPR 16-4 specifies a method to enable product committees to develop limits for alternative test methods, using conversions from established limits. This method is generally applicable for all kinds of disturbance measurements, but focuses on radiated disturbance measurements (i.e. field strength and total radiated power), for which several alternative methods are presently specified. These limits development methods are intended for use by product committees and other groups responsible for defining emissions limits in situations where it is decided to use alternative test methods and the associated limits in product standards.

2 Normative references

IEC 60050-161:1990, International Electrotechnical Vocabulary (IEV) – Chapter 161: Electromagnetic compatibility

CISPR 16-1-1:2019, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-1: Radio disturbance and immunity measuring apparatus – Measuring apparatus

CISPR 16-4-2:2011, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Measurement instrumentation uncertainty CISPR 16-4-2:2011/AMD1:2014 CISPR 16-4-2:2011/AMD2:2018